A Biologically Plausible Spiking Neuron Model of Fear Conditioning
نویسندگان
چکیده
Reinforcement learning based on rewarding or aversive stimuli is critical to understanding the adaptation of cognitive systems. One of the most basic and well-studied forms of reinforcement learning in mammals is found in fear conditioning. We present a biologically plausible spiking neuron model of mammalian fear conditioning and show that the model is capable of reproducing the results of four well known fear conditioning experiments (conditioning, second-order conditioning, blocking, and context-dependent extinction and renewal). The model contains approximately 2000 spiking neurons which make up various populations of primarily the amygdala, periaqueductal gray, and hippocampus. The connectivity and organization of these populations follows what is known about the fear conditioning circuit in mammalian brains. Input to the model is made up of populations representing sensory stimuli, contextual information, and electric shock, while the output is a population representing an autonomic fear response: freezing. Using a novel learning rule for spiking neurons, associations are learned between cues, contexts, and the aversive shock, reproducing the behaviors seen in rats during fear conditioning experiments.
منابع مشابه
A neurocomputational model of the mammalian fear conditioning circuit
In this thesis, I present a computational neural model that reproduces the high-level behavioural results of well-known fear conditioning experiments: first-order conditioning, second-order conditioning, sensory preconditioning, context conditioning, blocking, firstorder extinction and renewal (AAB, ABC, ABA), and extinction and renewal after secondorder conditioning and sensory preconditioning...
متن کاملImproving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns
Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...
متن کاملA functional spiking neuron hardware oriented model
In this paper we present a functional model of spiking neuron intended for hardware implementation. The model allows the design of speedand/or area-optimized architectures. Some features of biological spiking neurons are abstracted, while preserving the functionality of the network, in order to define an architecture easily implementable in hardware, mainly in field programmable gate arrays (FP...
متن کاملIndependent Component Analysis in Spiking Neurons
Although models based on independent component analysis (ICA) have been successful in explaining various properties of sensory coding in the cortex, it remains unclear how networks of spiking neurons using realistic plasticity rules can realize such computation. Here, we propose a biologically plausible mechanism for ICA-like learning with spiking neurons. Our model combines spike-timing depend...
متن کاملA Rate-Reduced Neuron Model for Complex Spiking Behavior
We present a simple rate-reduced neuron model that captures a wide range of complex, biologically plausible, and physiologically relevant spiking behavior. This includes spike-frequency adaptation, postinhibitory rebound, phasic spiking and accommodation, first-spike latency, and inhibition-induced spiking. Furthermore, the model can mimic different neuronal filter properties. It can be used to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013